CrossSection@nalyzer

The fastest way in Pre Design

Cross Section Analyzer is a tool for automatic creation and calculation of various cross sectional design concepts

Cross sections are generated basing on user-defined design variables. The software enables the definition of material, thickness and length design variables.

One of the greatest advantages of the Cross Section Analyzer is the speed of calculations. Now it is possible to calculate thousands of design variants in seconds !

Search for the optimal solution with the usage of results filtering functionality. Set the range of acceptable results values and find the most suitable cross sectional designs.

1

<u>CSA – WORKFLOW</u>

1.	Cross Section Analyzer – main view	3
2.	Main view – Explorer Window	4
З.	Main view – Cross Section's 2D View	5
4.	2D view – Cross Section in Macro Element Method	6
5.	Main view – Properties Window	7
6.	Open Cross Section For Analysis	
7.	Import Materials From Other Solutions	9
8.	Define Set Of Design Variables For An Analytical Combination	
9 .	Material Design Variable	
10	. Thickness Design Variable	
11	. Assign Plates To Previously Defined Design Variables	
12	. Length Design Variable	
13	. Move Point Design Variable	
14	. View the List of Combinations	
15	. Calculate	
16	. Results Report	21 – 23
17	.Results Report – Filtering	24
18	. Export – Results Report	
19	. Export – Cross Sections	

CSA main view is divder into 3 mail areas: Explorer window, cross section 2D view and Properties widnow.

Explorer window

The Explorer window includes the basic cross section, list of imported materials, all defined design variables and results reports. All elements of a CSA solution are grouped in appropriate folders in the explorer tree.

Cross Section 2D View

In the cross section 2D view the geometry of an analyzed cross section is presented. It is equipped with the selection and area selection tools which enable the user to select specific elements of the cross section and assign them to chosen design variables. Moreover, charts for axial response, bending response, torsion response etc. are available after clicking on an appropriate bookmark at the bottom of the 2D view window.

Properties window

In the Properties window the user can view properties of any selected object od the Analyzer's solution. Results of the basic cross section can be checked as well as detailed parameters of any plate or segment.

In case of materials, detailed characteristic of a selected material can be viewed In case of a selected design variable the user can view, define and edit desired parameters.

<u>Main Toolbar</u>

Main toolbar located above the Explorer window guaranties easy access to main functionalities of the CSA. Detailed description of CSA tools and functionalities will be given in later parts of this manual,

<u> MAIN VIEW – Explorer Window</u>

The Explorer tree enables easy access to all elements of an analytical project. All objects can be found in appropriate expandable folders.

MAIN VIEW – Cross Section 2D view

In the cross section 2D view the geometry of the base cross section is displayed. The window is equipped with selection tool – the user can easily select plates and points of the cross section, view their definition in the properties window and assign them to a chosen design variable.

Material Editor

Double click on a chosen material in the Explorer window to open the Material Editor window. In the Material Editor the stress-strain curve is displayed Additionally, after selecting the appropriate

bookmark, you can view the strain rate characteristic.

All information about detailed material definition are available in the Properties window

2D VIEW – Cross Section in Macro Element Method

Accordingly to the Macro Element Method (MEM) the VCS software enables the creation of a simplified cross section model build of plates and segments based on Points.

All Cross Sections created in MEM consist of :

- Points
- Plates created by connecting two Points
- Segments build of Plates
- Super Folding Elements and possibly
- Connections

IMPORTANT NOTICE

Please note that a cross section purposed for analysis in the CSA needs to be defined with accordance to the Macro Element Method.

Incorrect or too dense discretization of a cross section can affect the overall results.

In the picture on the left you can see an example of a Cross Section modelled in MEM. Please note that each segment has been marked in different color.

A Macro Element model is a **simplified model**, where details of the cross sectional geometry should be neglected.

The problem of radius modelling at the Cross Section level is related to the definition of Super Folding Element (SFE) and corresponding modelling methodology (quite different then in FE programs). The energy absorption in corner area can be significantly increased only for radii that guarantee development of full plastic folds like in the case of circular or hexagonal column.

In the picture on the right you can see the comparison of a simplified MEM model (gray) and a typical model created in accordance to the FE methodology.

<u> MAIN VIEW – Properties Window</u>

In the Properties window the user can view detailed definition of any selected object from a current CSA solution.

0. Basic Properties				
Material	Mild steel 325			
Thickness	1.3			
1. Apperance				
Color	165, 165, 165			
Visible	True			
2.Properties				
DirectionVector	(1 E0, 0 E0, 0 E0)			
End	(30, 53.3615242270663)			
Start	(-30, 53.3615242270663)			
Width	60			
WidthEffective	61.26			
3.Design Recommen	dations			
Maximal/Width	61.26 [mm] (OK)			
RequiredWidth	13 [mm]			
4. Misc				
Name	0-Plate			
PlateType	Web			
Other				
Comment				
Guid	7fb8f2c7-4668-4cb2-9181-478f32f4ab12			
Laver	Default			

For any selected plate information concerning thickness, assigned material and length are available. Those data can be treated as reference when defining design variables.

anal

In CSA it is possible to work with ductile isotropic materials which can be defined in form of elasticplastic piecewise characteristic .

The Material is described by five groups of data in Available the Properties window:

- Material Constants
- Stress Strain Characteristic
- Strain Rate Characteristic
- Hardening Factor
- Fracture Indicator

1) Open Cross Section for Analysis

1. Open cross section for analysis

Import a Thin Walled Cross Section previously created in any VCS or CCC solution. All materials assigned to plates of the imported cross section will be automatically added to the Analyzer Project.

Objects Import Available objects:		In the "Object Import" window select one thin
Object Name Object Type Hat section 1.2 mm x 0.8 mm VCS_CS_ThinWalled	Image: State	walled cross section for further analysis. On the right hand side of the window a complete set of cross sectional properties is displayed.
	SEA 9.3457 [kNm/kg] ▶ SelectedFoldingM 3. Accepted Pm=23.63 SquashLoad 58.08 [kN] TriggeringDent 7.42 [mm] TriggeringForce Not defined ▶ BendingMxx Mox (red principal axis) ▶ BendingMyy Myy (blue principal axis) ▶ DentingResponse Denting cusbing data	You can import one cross section for each analytical project.

After the import is completed the cross section is added to the Explorer tree and is displayed in the main 2D view.

In the Properties window you can find detailed information about the cross section. After selecting a plate in the 2D view you will be able to view its Properties (along with the information about assigned material and thickness).

All materials assigned to plates of the imported cross section will be automatically added to the CSA solution and placed in appropriate folder in the Explorer window.

Important Notice:

Imported cross section needs to be defined accordingly to the Macro Element Method requirements.

2) Import Materials from other solutions

You can import materials from any VCS or CCC solution – afterwards they can be used to define Material design variable.

All imported materials can be found in the Explorer window. Their definition can be viewed in the Properties window.

In the "Object Import" list of all materials included in the selected file is displayed.

On the right hand side of the window material properties can be viewed.

Select all materials you wish to import and click on the "Import Selected" button.

Select a VCS or CCC file from which you wish to

All imported materials can be found in the Explorer window.

Detailed definition of a material can be viewed in the Properties window.

Double click on a selected material to open the Material Editor window in which stress-strain and strain rate characteristics are displayed.

For each "Analytical Combination" you can define four types of design variables: material, thickness, length and move point design variables.

<u>Create additional Analytical Projects</u>

endiyzei

You can create number of analytical combinations within a single Analyzer Project. This enables you to analyze even more design option within one Analyzer Project.

🎬 🛩 🖬 🔛 🛋 Ma Th Le Mp 🔟	
In order to create additional Analytical Combination simply click on the icon in CSA main menu. New Analytical Combination branch will be added to the Explorer tree together with a set of folders for four types of design variables.	Analytical Combination Material Design Variables Thickness Design Variables Length Design Variables Move Points Design Variables Analytical Combination Material Design Variables
cross Section	Thickness Design Variables Length Design Variables Move Points Design Variables Reports

Material Design Variable

Mo.

In order to open and define a chosen design variable select the appropriate folder in the Explorer window. Afterwards click on the design variable icon available in the CSA main toolbar.

After selecting the Material Design Variable (double click in the Explorer tree) a "Browse for Material" window will appear on the screen.

In this window you can browse for all materials you wish to be automatically assigned to chosen plates during the analysis procedure.

The Material Design Variable is now successfully defined.

After selecting a material design variable in the explorer the its definition will be available in the Properties window. In the "Values" section of the Properties window all defined material options are listed.

	≜ ↓ 🖾					
۵	⊿ Misc					
	Name	M-DV-0				
۵	Values	{Mild steel 460', Mild steel 250', Mild steel 26				
	Option 1	Mild steel 460				
	Option 2	Mild steel 250				
	Option 3	Mild steel 260				
	Option 4	Mild steel 325				
	o participation of					

After the definition of Material Design Variable is completed a plate or a number of plates needs to be assign to it.

The procedure of assigning plates to a design variable is described in later part of this manual.

Each design variable can be removed from the CSA project after clicking on the "delete" icon in the main toolbar.

Thickness Design Variable

Th

The Thickness Design Variable enables the user to assign various thickness values within the defined range to a selected plate or a group of plates.

After selecting the Thickness Design Variable (double click in the Explorer tree) a "Thickness Design Variable Editor" window will appear on the screen.

Basing on the design variables definition the software will automatically create cross sectional design variants, where prior selected plates will be given various thickness values.

In the Properties window you can view and edit the	٥	Misc		
docian variable		Increment	0.5	
		Manual	(Collection)	
In the "Values" section a list of all thickness variants is		Maximum	3	
given		Minimum	0.5	
given.		Name	T-DV-1	
		Synthetic	True	
	٥	Values	{0.5', 1', 1.5', 2', 2.5', 3'}	
		Option 1	0.5	
		Option 2	1	
Fach design variable can be removed		Option 3	1.5	
Each design variable can be removed		Option 4	2	
from the CSA project after clicking on		Option 5	2.5	
IUSS the "delete" ison in the main teelber		Option 6	3	

Select plates and assign them to a selected design variable

Firstly select required plate or number of plates and afterwards drag and drop them in the appropriate design variable (in the Explorer window)

The procedure of assigning plates to a design variable done by means od a simple drag-anddrop tool. The three steps of this activity are given below.

3) All assigned plates will be automatically added to the chosen design variable in the Explorer tree.

(Cross

After selecting a design variable in the Explorer window all assigned to it plates will be highlighted in orange in the 2D view window.

Length Design Variable

Le

The Length Design Variable enables the user to assign various length values within the defined range to a selected plate or a group of plates.

Useful keyboard shortcuts:					
Key: L – show lengths					
Key: T – show thickness					

Click on the cross section 2D view and use one of the presented keyboard shortcuts in order to display plates length thicknesses and / or lengths.

The Length Design Variable offers two definition options: - Multiple Plates (the same length) - Multiple Plates (slaves proportional length)
In the "Length Design Variable" window you can set the minimum and maximum length value for chosen plate or number of plates. Additionally the increment needs to be defined.
Alternatively, after checking the "Manual" option, it is possible to enter set of user defined thickness values. In case the "Synthetic" option was selected, a list of all thickness variants will be automatically displayed.

Each design variable can be removed from the CSA project after clicking on the "delete" icon in the main toolbar.

Length Design Variable

Le

After the definition of Length Design Variable is completed a plate or a number of plates needs to be assign to it, as well as a set of master and slave points. The procedure of assigning plates to a design variable is described below.

Le <u>Length Design Variable</u>

The Length Design Variable offers two options of multiple plate movement definition:

1. Multiple plates – the same length

Variable type:

2. Multiple plates – slaves proportional length

Multiple Plates (the same length)
 Multiple Plates (slaves proportional length)
 In case of the "the same length" option all plates assigned to the design variable will share the same length value. You can assign several slave points to a selected plate (here marked in blue).
 Slave points will change their position along a vector parallel to the master point's plate (see below).
 Master Point
 Slave Point

Multiple Plates (slaves proportional length)

In case of the "slaves proportional length" the plate "attached" to a slave plate will change its length proportionally to the master plate.

The slave point (marked below in blue) will change its position along a line tangent to its original plate (see below).

Please note that in consequence of such plate-length change the angles between plates of the cross section will remain the same.

Move Point Design Variable

The Move Point Design Variable enables you to change coordinates of selected points along a user-defined vector. This allows to analyze various geometry variants.

After the Move Point Design Variable is created select required points in the 2D view (use the area selection tool) and drag and drop them to the Explorer window. All points added to the design variable will be automatically listed in the explorer tree.

Thanks to the "Move Point" design variable it is possible to define the change of selected points coordinates.

Position of chosen points will change along a user-defined vector. For each point an individual vector can be defined. Double click on a point in the explorer window to open the "Move Point Design Variable Editor" (see below).

Move Point Design Variable Editor	Define the vector values (X and Y coordinates)
Increment: 10 Steps: 5 OK Cancel Apply	Cefine increment and number of steps

Vectors defined in the editor window are displayed in the main 2D view as blue lines. After clicking on a Move Point Design Variable in the explorer tree all assigned to it points will be marked (red) and all defined vectors displayed (see below)

As a result of a fully defined move point design variable the CSA will automatically generate number of cross sectional design variants, where coordinates of assigned points will be changed along the defined vector. Please see the example below:

Cross

anal

Examples of automatically generated variants of cross sectional geometry.

View the List of Combinations

After all design variables are defined and all required elements of the cross section are properly assigned the further steps of analysis procedure can be done. Before conducting the CSA calculations it is recommended to check the list analytical combinations.

Double click on a selected "Analytical Combination" in the Explorer window. In the "Analytical Combination" window which will appear on the screen you will be able to view details of the design variants.

In appropriate columns values for thickness and length design variable are given. Materials used for each design variant are listed in the "Material Design Variable Column".

1.1.10						
alytical Con	nation				<u> </u>	
>						
Combinat Id	tion Status	Thickness Design Variable	Thickness Design Variable	Material Design Variable	_	
000	Created	0.6	0.8	0-Material 400		
001	Created	0.6	0.8	1-Material 425		
002	Created	0.6	0.8	2-Material 450		
003	Created	0.6	0.8	3-Material 460		
010	Created	0.6	1.2	0-Material 400		
011	Created	0.6	1.2	1-Material 425		
012	Created	0.6	1.2	2-Material 450		
013	Created	0.6	1.2	3-Material 460		
020	Created	0.6	1.6	0-Material 400		
021	Created	0.6	1.6	1-Material 425		
022	Created	0.6	1.6	2-Material 450		
023	Created	0.6	1.6	3-Material 460		
100	Created	0.8	0.8	0-Material 400		
101	Created	0.8	0.8	1-Material 425		
102	Created	0.8	0.8	2-Material 450		
103	Created	0.8	0.8	3-Material 460		
110	Created	0.8	1.2	0-Material 400		
111	Created	0.8	1.2	1-Material 425		On the very bottom of the
112	Created	0.8	1.2	2-Material 450		"Analytical Combinations'
113	Created	0.8	1.2	3-Material 460		window you can find total
120	Created	0.8	1.6	0-Material 400		number of combinations
121	Created	0.8	1.6	1-Material 425		and design variables
122	Created	0.8	1.6	2-Material 450	-	contained in the selected
ded 48 comb	pinations based on	3 Design Variables.				Analytical Combination

In the presented example 3 design variables were defined (two thickness design variables, one material design variable). Basing on those definitions the software created 43 combinations.

Calculate

The Cross Section Analyzer automatically creates and calculates cross sectional design variants (combinations) basing on the previously defined design variables.

Important notice:

You need to save the CSA project before the calculations.

A	nalyzer - Start Calculations			
	Parameters:			
	Number of Cross Sections to Calculate:		168	In the "Analyzer – Start
	Number of Processor Threads to use duri	ing calculation:	80	Calculations" window you can see
L	Number of logical Processors available:		4	the number of cross sections that
	File Path:		RIALS\example 1.vcsa	are to be calculated. In the given
		Start Close		example the software created 168 cross sections

One of the greatest advantages on the Analyzer software is the speed of calculations. In the given example calculation of 168 cross sections took slightly over 5 seconds.

group of calculated

In this are you can also

combinations

define filters.

Results REPORT

Results of the cross sectional analysis are available in the "Analyzer Report" window.

21

For each cross section selected results are shown.

Results REPORT

Apart from the "Radar" functionality the Results report includes the **Line Chart** bookmark which enables more detailed analysis of selected cross sections.

22

Double click on a selected cross section from the list to open its individual window

- View the geometry of the selected design.
- All results are available in the Properties part of the window
- Additionally result charts are available under appropriate bookmarks.

Double click on a selected parameter to define the results filter

Combination Name	#	Calculated	#	Combinations			
Analytical Combination	60)	60)			
Analytical Combination	0		0				
						1.	Double click on a selected
							narameter
							parameter
Parameter Name	Filter Min	Filter Max	Min	Max	#In		
			251 /1	310	60		
Specific Mass			1.99	2.45	60		
Axial Response - Energy Absorption			31246.17	38829.57	60		
🗹 Axial Response - PeakForce			86683.58	110282.93	60		
Axial Response - SEA			15.73	18.1	60		
Axial Response - Squash Load			100565.57	124000	60		V
Axial Response, Selected Folding			31246.17	38829.57	Define Repo	rt Filter	
Axial Response, Selected Folding			17.1	22.16			
Axial Response, Selected Folding			30	54	Parameter	S:	
					Filter Nam	e:	Specific Mass
2 Define the acc	entable	minimu	m and		Minimum t	o accept:	1.98
	cptubic	mmmu	in ana		Maximum	to accept:	2.1
	le ,						
(the maximum	n and mi	nımum	results	are	Minimum:		1.9862
given for refer	ence)				Maximum:		2.449
-	,						,
2 Click "OK"							OK Cancel
2. CHER ON							

The filter is now defined. You can see the number of cross sections within the filter's range in the "In#" column (see below).

In the "List of calculated cross sections" window only those cross sections which fulfill the filter's conditions will be listed (as long as the filtered parameter is checked).

Parameter Name	Filter Min	Filter Max	Min	Max	#In
Area			251.41	310	<u>co</u>
Specific Mass	1.98	2.1	1.99	2.45	15
🗌 Axial Response - Energy Ab	sorption		31246.17	38829.57	60
Axial Response - Peak Force	,		86683.58	110282.93	60
🖌 Axial Response - SEA			15.73	18.1	60
🗌 Axial Response - Squash Lo	ad		100565.57	124000	60

Anal	yzer Report - Analyzer Report	1.1.1								
	🖬 🖃 🖉 🛛 🛛 Com	On the top of the								
Combination Name #Calculated					#Combinations		roport window			
	Analytical Combination	additional information about								
Par	ameter Name	Filter Min	Filter Max	Min	Max	#In		common set or		
	Specific Mass	1.41	1.5	1.41	2.12	134		cross sections is		
Axial Response - SEA		23 24.45		16.94	24.46	153		displayed		

"Common set" gives the number of cross sections which fulfil the requirements of all defined filters.

In the example presented above 2 filters were defined (for specific mass and SEA).

From the total number of 450 calculated cross sections 80 fit in the range of both filters.

<u>Export – RESULTS REPORT</u>

 \sim

Selected results of the Analyzer Report can by easily exported after clicking on the "Export" icon available in the report's main toolbar.

3. Click on the "Export" icon. The results of selected cross sections will be exported in a .html document.

C file:///Z:/IDE/ANALYZER/TESTS;	/results%20export/test	t%202.html.ht	ml				4
		nelure	r Dono	wł			
	A	naiyze	г керо	n			
	Ana	lytical C	ombinati	ons			
Analitical Combination Name	Number of C	alculated Cr	oss Sections		Number of	Cross Sections	
Analytical Combination	450				450		
		Filt	ters				
Filter Name		Filter Min	Filter Max	Min	Мах	Number of Cross Sections	
Area				270.28	336.07	450	
Specific Mass		1.41	1.5	1.41	2.12	134	
Axial Response - Energy Absorption				30759.82	38511.09	450	
Axial Response - PeakForce				85818.8	112893.91	450	
Axial Response - SEA		23	24.45	16.94	24.46	153	
Axial Response - Squash Load				82675.33	108922.84	450	
Axial Response, Selected Folding Mod Force	e - Mean Crushing			30759.82	38511.09	450	
Axial Response, Selected Folding Mod Wave	e - Plastic Folding			17.98	25.21	450	
Axial Response, Selected Folding Mod	e - Transition Angle			42	54	450	
Bending Mxx - Fully Plastic Moment				967.88	1090.99	450	
Bending Myy - Fully Plastic Moment				1397.9	1856.34	450	
Elastic Properties - Ixx				39689.52	53986.82	450	
Elastic Properties - Iyy				61698.52	97876.3	450	
Elastic Properties - Shear Stiffness GA	x			8506820.37	15547159.74	450	
Torsion Response - Torque Fully Plasti	:			573.23	648.6	450	

Afterwards you can find in the document a table covering results for previously selected cross sections. Additionally the report contains the Radar Chart, Line Chart and curve comparison view

The Exported document contains basic information about the calculated analytical combination.

The list of prior selected results is available together with information about filters definition.

H

Each cross section generated during the analytical procedure can be saved and afterwards opened in VCS of CCC solution.

The "Save Selected Cross Sections" icon is available in the main toolbar of the Analyzer Report.

Name	Specific Mass	Axial Response - Peak Force	Axial Response - SEA	Bending Mxx - Fully Plastic Moment	Bending Myy - Fully Plastic Mome
07 - 1-Double hat & diaphragm - Cloned	2.03	89034.84	18.1	721.03	1826.55
08 - 1-Double hat & diaphragm - Cloned	2.01	87670.3	18	693.27	1809.87
09 - 1-Double hat & diaphragm - Cloned	1.99	86683.58	15.73	668.97	1790.74
✓ 16 - 1-Double hat & diaphragm - Cloned	2.09	92151.84	17.53	788.86	1868.4
17 - 1-Double hat & diaphragm - Cloned	2.06	90434.99	16.18	753.01	1847.01
🔲 18 - 1-Double hat & diaphragm - Cloned	2.03	88886.99	18.04	718.23	1819.85
19 - 1-Double hat & diaphragm - Cloned	2	87595.89	17.95	694.13	1810.19
27 - 1-Double hat & diaphragm - Cloned	2.09	91903.63	17.55	785.98	1863.34
28 - 1-Double hat & diaphragm - Cloned	2.06	90241.72	18.04	749.94	1841.49
29 - 1-Double hat & diaphragm - Cloned	2.03	88757.95	18.01	718.91	1819.91
🔲 38 - 1-Double hat & diaphragm - Cloned	2.08	91675.96	16.03	783.17	1859.21
39 - 1-Double hat & diaphragm - Cloned	2.05	90067.93	17.99	748.02	1835.32
✓ 49 - 1-Double hat & diaphragm - Cloned	2.08	91467.06	17.99	780.25	1852.17

Select all cross sections you wish to save. You can export several cross sections simultaneously.

